

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

www.sisoft.in

http://www.sisoft.in/

 Class:

Classes are the most important feature of C++ that leads to Object
Oriented programming language.

Class is a user defined data type, which holds its own data members and
member functions, which can be accessed and used by object of that
class.

The variables inside class definition are called as data members and the
functions are called member functions of the class.

Example:

Class of birds, all birds can fly and they all have

 wings and beaks. So here flying is a behavior and

 wings and beaks are part of their characteristics.

www.sisoft.in

Defining the Class in C++:-

In C++, Class is defined using keyword class followed by an identifier
(name of class).

Body of class is defined inside curly brackets an terminated by
semicolon at the end like structure.

Syntax:

class class_name

{

 // body of class

};

www.sisoft.in

 Access specifiers in C ++:

 Access specifiers in C++ class defines the access control rules. It means,
they set boundaries for availability of members of class i.e. (data
members and member functions).

 C++ used 3 keywords in classes:

 1. private

 2. public

 3. protected

 Access specifiers are followed by a colon. User can use either one, two
or all the 3 specifiers in the same class to set different boundaries for
different class members.

 This feature in OOP is known as data hiding. Generally, data are private
and functions are public.

 www.sisoft.in

Private keyword:

 Keyword private makes data and functions is private. Private data and
functions are accessible inside that class only.

 Private , means that no one can access the class members outside that
class. If someone tries to access the private member, they will get a
compile time error.

Public keyword:

 Keyword public makes data and functions is public. public data and
functions are accessible both inside and outside the class.

 Public, means all the class members declared under public will be
available to everyone. The data members and member functions
declared public can be accessed by other classes too. Hence there are
chances that they might change them. So the key members must not be
declared public.

www.sisoft.in

Protected Keyword:

 Protected, is the last access specifier , and it is similar to private, it
makes class member inaccessible outside the class. But they can be
accessed by any subclass of that class.

www.sisoft.in

 Objects :

 Objects are instances of class, which holds the data, for variables of
the class and the member functions of the class work on these class
objects.

 Each object has different data variables.

 Objects are initialized using special class functions called
Constructors , and whenever the object is out of its scope, another
special class member function called Destructor, to release the
memory which is reserved by the object.

 C++ doesn't have Automatic Garbage Collector like in JAVA, so in
C++ Destructor performs this task.

www.sisoft.in

 Simple class Example :

class student

{

private:

int marks;

char name[30];

public:

int getdata()

{

cout<<“Enter the name & marks of student\n";

gets(name);//cin>>name;

cin>>marks;

return marks;

}

void printdata()

{

cout<<"name:"<<"\t"<<name<<endl;

cout<<"marks:"<<"\t"<<marks<<endl;

}

};

int main()

{

student s;

s. getdata();

cout<<"Marks is :"<<s . marks<<endl;

s . printdata ();

return 0;

}

Output:

Enter the name & marks of student :
Sunita
30

Marks is: 30
Name: Sunita
Marks: 30

www.sisoft.in

 Program show difference b/w Private & public data:

class box

{

int length;

public:

int width;

void setdata (int l);

void printdata();

};

void box :: setdata (int l)

{

length = l;

}

void box :: printdata()

{

cout<<"length & width is:"<<"\t"<< length<<
"\t"<<width<<endl;

}

int main()

{

box b;

b. setdata (20);

// b. length=20; // Show error. Here
 length is private.

b. width=10;

b. printdata();

getch();

}

 Output:

Length & width is : 20 10

www.sisoft.in

 Protected Keyword Example :

class box

{

protected:

double width;

};

class smallbox : box

{

public:

void setwidth(double w)

{

width=w;

}

double print()

{

return width;

}

};

void main()

{

smallbox b;

b.setwidth(40.2);

cout<<"Width is "<<b.print();

getch();

}

Output:

Width is 40.2

www.sisoft.in

Defining Member Function Outside the Class :

 A large program may contain many member functions. For the clarity
of the code, member functions can be defined outside the class.

 To do so, member function should be declared inside the class(means,
function prototype should be inside the class). Then, the function
definition can be defined using scope resolution operator ::

www.sisoft.in

 Example :

class student

{

public:

int marks;

char name[30];

int getdata();

void printdata ();

};

int student :: getdata()

{

cout<<"enter the name & marks of student\n";

gets(name);//cin>>name;

cin>>marks;

return marks;

}

void student :: printdata()

{

cout<<"name:"<<"\t"<<name<<endl;

cout<<"marks:"<<"\t"<<marks<<endl;

}};

int main()

{

student s;

s. getdata();

cout<<"Marks is :"<<s . marks<<endl;

s . printdata ();

return 0;

}

Output:
Enter the name & marks of student :
Sunita
30
Marks is: 30
Name: Sunita
Marks: 30

www.sisoft.in

Types of Member Functions in C++

• Simple functions

• Inline functions

• Static functions

• Const functions

• Friend functions

www.sisoft.in

Simple Member functions:

 These are the basic member function, which don’t have any special
keyword like static etc as a prefix.

Syntax:

 return_type function_Name(parameter list)

 {

 // function body

 }

Inline functions:

 All the member functions defined inside the class definition are by
default declared as Inline.

www.sisoft.in

Static Member functions:

 Static is a keyword which can be used with data members as well as
the member functions. A function or variable is made static by using
static keyword.

 Static functions are class type functions , so they can be called using
the object or called directly using the class name.

 These functions cannot access ordinary data members and member
functions, they can accessed only static data members and static
member functions.

Const Member functions:

 Const keyword makes variables and functions constant, that means
once defined, there values can't be changed . When used with
member function, such member functions can never modify the
object or its related data members.

 Syntax: void fun() const { }

 www.sisoft.in

Friend functions:

 Friend functions are actually not class member function. They are
made to give private access to non-class functions.

 You can declare a global function as friend, or a member function of
other class as friend.

www.sisoft.in

Inline Functions in C++

www.sisoft.in

 All the member functions defined inside the class definition are by
default declared as Inline.

 With an inline function, the compiler tries to expand the code in the
body of the function in place of a call to the function.

 Inline functions in C++ do the same thing what Macros do in C.
Preprocessors were not used in C++ because they had some
drawbacks.

www.sisoft.in

 Example:

class Number

{

public:

inline int max(int x, int y)

{

return (x>y)?x:y;

}

};

int main()

{

Number n;

cout<< “max(40,50)”<<n.max(40,50)<<endl;

}

Output: 50

www.sisoft.in

Nesting of Member functions

www.sisoft.in

 A member function of a class can be called only by an object of that
class using a dot operator.

 A member function also can be called by using its name inside
another member function of the same class. This is known as
nesting of member functions.

www.sisoft.in

 class set
{
int m,n;
public:
void input(void);
void display(void);
int largest(void);
};

int set :: largest(void)
{
if(m >= n)
return(m);
else
return(n);
}
void set :: input(void)
{
cout << "Input value of m and n"<<"\n";
cin >> m>>n;
}

 void set :: display(void)
{
cout << "largest value=" << largest()
<<"\n";
}

int main()
{
set A;
A.input();
A.display();

return 0;
}

 The output of program would be:
Input value of m and n
25 18
Largest value=25

www.sisoft.in

Array within a Class in C++

www.sisoft.in

 Arrays can be declared as the members of a class. The arrays can be
declared as private, public or protected members of the class.

Example:

const int size=10;

class array
{
int a[size];
public:
void setval(void);
void display(void);
};

Here array variable a[] declared as
private member of the class array can
be used in the member function, like
any other array variable.

We can perform any operations on it. In
this class, the member function setval()
sets the value of element of the array
a[], and display() function displays the
values. Similarly, we may use other
member functions to perform any
other operation on the array values.

www.sisoft.in

const int size=5;

class student

{

int roll_no;

int marks[size];

public:

void getdata ();

void tot_marks ();

} ;

void student :: getdata ()

{

cout<<"\nEnter roll no: ";

cin>>roll_no;

for(int i=0; i<size; i++)

{

cout<<"Enter marks in subject"<<(i+1)<<": ";

cin>>marks[i] ;

}

}

void student :: tot_marks() //calculating total
marks

{

int total=0;

for(int i=0; i<size; i++)

total+ = marks[i];

cout<<"\n\nTotal marks "<<total;

}

int main()

{

student stu;

stu.getdata() ;

stu.tot_marks() ;

return 0;

}

www.sisoft.in

Array of Objects in C++

www.sisoft.in

 Arrays of variables having type "class" is known as "Array of
objects". Here the "identifier" used to refer the array of objects is
an user defined data type.

 Consider the following class definition:

class employee
{
char name[30];
float age;
public:
void getdata(void);
void putdata(void);
};

Here the identifier employee is a user defined data type,
which used to create objects that relate to different
categories of the employees.

Ex: employee manager[3]; // An array of manager
 employee worker [4]; // An array of worker

www.sisoft.in

class student

{

char name[30];

int rollno;

public:

int getdata()

{

cout<<"Enter name & age\n";

cin>>name>>rollno;

return 0;

}

int printdata()

{

cout<<"name:"<<name<<endl;

cout<<"rollno:"<<rollno<<endl;

return 0;

}

};

int main()

{

student s[3];

int i;

cout<<"List is\n";

for(i=0;i<3;i++)

{

s[i].getdata();

}

cout<<endl;

for(i=0;i<3;i++)

{

cout<< "student "<<i+1<<endl;

s[i].printdata();

}

}

www.sisoft.in

Objects as function arguments in
C++

www.sisoft.in

 The objects of a class can be passed as arguments to member
functions as well as nonmember functions either by value or by
reference.

 1) When an object is passed by value, a copy of the actual object
is created inside the function. This copy is destroyed when the
function terminates. Moreover, any changes made to the copy of
the object inside the function are not reflected in the actual object.

 2) On the other hand, in pass by reference, only a reference to
that object (not the entire object) is passed to the function. Thus,
the changes made to the object within the function are also
reflected in the actual object.

www.sisoft.in

class A

{

private:

 int num1;

 int num2;

public:

 A():num1(1),num2(1)

 {}

 void get ()

 {

 cout<<"enter num1";

 cin>>num1;

 cout<<"enter num2";

 cin>>num2;

 }

 void print ()

 {

 cout<<"num1is:"<<num1<<"\t"<<"num2
is:"<<num2<<endl;

 }

void multi(A r1, A r2)

 {

 num1=r1.num1*r2.num1;

 num2=r1.num2*r2.num2;

 }

};

int main ()

{

 A r1,r2,r3;

 r1.get();

 r2.get();

 r3.multi(r1,r2);

 r3.print();

}

www.sisoft.in

Returning Objects in C++

www.sisoft.in

 A function cannot only receive objects as arguments but also can
return them.

 The function could return

 1) A reference to an object

 2) A constant reference to an object

 3) An object

 4) A constant object

If a method or function returns a local object, it should return an object,
not a reference.

If a method or function returns an object of a class for which there is no
public copy constructor, such as ostream class, it must return a
reference to an object.

www.sisoft.in

Example:

class data

{

 int a , b ;

 public:

 void get();

 friend data sum (data , data);

void show();

 };

void data::get()

{

 cout<<"PLEASE ENTER FOR A:->";

cin>>a;

cout<<"PLEASE ENTER FOR B:->";

cin>>b;

 }

 void data::show()

 {

 cout<<"A= "<<a<<endl;

 cout<<"B= "<<b<<endl;

 }

 data sum(data a1,data a2)

{

 data a3;

a3.a=a1.a+a2.a;

 a3.b=a1.b+a2.b;

 return a3;

}

main()

 {

 data a , b , c;

 a. get();

 b . get();

 c=sum(a , b);

 c . show();

}

www.sisoft.in

Const member functions in C++

www.sisoft.in

 If a member function does not alter any data in the class, then we may
declare it as a const member function.

 Example:

 1) void multiply (int , int) const;

 2) void getdata () const;

 The qualifier const is must append with function in both definitiion &
declaration.

 The compiler will generate an error message if such functions try to
alter the data value.

www.sisoft.in

class student

{

public:

 int marks;

 student(int x) // Constructor

 {

 marks=x;

 }

 int printdata() const // Constant function

 {

 // marks++; // Can't modify value of marks
cout<< marks;

 }

 int output()

 {

 marks++;

 cout<< marks;

 }

};

int main()

{

student obj1(10); // Non const Object

const student obj2(20); // Const Object

obj1.printdata(); // No error

obj2.printdata(); // No error

cout << obj1.marks << obj2.marks ;

 obj1.output(); // No error

// obj2.result(); // Compile time error
because obj2 is const object

}

Output:
 10 20 10 20 11

Here, we can see, that const member function
never changes data members of class, and it can
be used with both const and non-const object.
 But a const object can't be used with a member
function which tries to change its data members.
*/

www.sisoft.in

Local Class in C++

www.sisoft.in

 Classes can be defined and used inside a function or a block. Such classes are
called local classes.

Example:

void test (int a)

{

……

……

Class Student

{

……

……

};

……

……

Student s1(a);

……

}
www.sisoft.in

int j = 8;

void fun()

{

 int y; // Non-static variables

 static int x; // static variable

 enum {i = 1, j = 2};

 class Test // Local class

 {

 int z =7;

 public:

 void method() {

 cout << "x = " << x << endl;

 cout << "i = " << i << endl;

// cout << "y = " << y << endl; // Member is non
static so not accessible inside local classes.

 cout << "z = " << z << endl;

 cout << "j = " << j << endl;

}

 };

 Test t;

 t . method();

}

int main()

{

 fun();

 return 0;

}

 Output:

 x=0

 i=1

 z=7

 j=8

www.sisoft.in

Friend Function in C++

www.sisoft.in

 We know that the private members cannot be accessed from
outside the class. It means that a nonmember function cannot have
an access to the private data of a class.

 However, they could be a situation where we could like two classes
to share a particular function.

 In such situations, C++ allows the common function to be made
friendly with both the classes, which allow the function to access
the private data of these classes. Such a function need not be a
member of any of these classes.

 To make an outside function “friendly” to a class, we simply declare
this function as a friend of the class.

www.sisoft.in

Declaration of Friend Function:

class A

{

……

……

public:

……

……

friend void print (void) // Declaration

};

www.sisoft.in

Characteristics of Friend Function:

 1) It is not in the scope of the class to which it has been
declared as friend.

 2) Since it is not in the scope of the class, it cannot be called
using the object of that class.

 3) It can be invoked like a normal function without the help
of any object.

 4) Unlike member function, it cannot access the member
names directly and has to use an object name and dot
membership operator with each member name.

 5) It can be declared either in the public or the private part
of a class without affecting its meaning.

 6) Usually, it has the objects as arguments.

www.sisoft.in

Program

class sum

{

private:

 float a , b;

 friend float mean (sum s);

public:

 void result()

 {

 cout<<"Enter the values";

 cin>>a>>b;

 }

// friend float mean (sum s);

};

float mean (sum s)

{

 return float(s .a + s .b)/2;

}

int main()

{

 sum s1;

 s1.result();

 cout<<mean(s1);

 }

www.sisoft.in

Memory Allocation for Objects

www.sisoft.in

• We know that the memory space for objects is allowed when
they are declared and not when the class is specified. This
statement is partly true.

• Actually , the members functions are created and placed in the
memory space only once when they are defined as a part of a
class specification.

• Since all the object belonging to that class use the same member
function, no separate space is allocated for member functions
when the objects are created. Only space for member variables is
allocated separately for each object, becoz each variables hold
different data for each object.

www.sisoft.in

www.sisoft.in

Static Data Members in
C++

www.sisoft.in

Static is a keyword in C++ used to give special
characteristics to an element. The properties of a static
member variable are similar to that of a C static
variable.

A static member variable has certain special
characteristics. These are:

1) It is initialized to zero when the first object of its
class is created. No other initialization is permitted.

2) Only one copy of that member is created for the entire
class and is shared by all the objects of that class, no
matter how many objects are created.

3) It is visible only within the class, but its lifetime is the
entire program.

www.sisoft.in

Static data member in class

 Static data members of class are those
members which are shared by all the objects.
Static data member has a single piece of
storage, and is not available as separate copy
with each object, like other non-static data
members.

Static member variables (data members) are
not initialized using constructor, because
these are not dependent on object
initialization.

www.sisoft.in

Static variables are normally used to maintain values common to the entire class.
For example, a static data member can be used as a counter that record the

occurrences of all the objects . Program illustrates the use of a static data
member.

 using namespace std;

class item
{
static int count;
int number;
public:
void getdata (int a)
{
number = a;
count ++;
}
void getcount (void)
{
cout << "Count: ";
cout << count <<"\n";
}
};

 int item :: count;

int main()
{
item a , b ,c;
a . getcount();
b. getcount();

a.getdata(100);
b . getdata(200);

cout << "After reading data"<<"\n";
a . getcount();
b . getcount();
return 0;
}

www.sisoft.in

Static class Objects :

 Static keyword works in the same way for class
objects too. Objects declared static are
allocated storage in static storage area, and
have scope till the end of program.

 Static objects are also initialized using
constructors like other normal objects.
Assignment to zero, on using static keyword is
only for primitive data types, not for user
defined data types.

www.sisoft.in

Static Member Functions
 Like static member variable, we can also have static member

function. A member function that is declared static has the
following properties:
A static function can have access to only static members
declared in the class.

 A static member function can be called the class name as
follows:

class-name::function-name;

www.sisoft.in

class item

{

 static int count;

 int number;

 int data;

 public:

 void getdata (int a)

 {

 number = a;

 count ++;

 }

 static void getcount (void)

 {

 cout << "Count: ";

 cout << count <<"\n";

 // cout<<"Data is: "<<"\t"<< data <<endl;

// Static function access only static data.

 }

};

int item :: count; // Definition of static data member

int main()

{

 item a , b ,c; // Count is initialized to zero

 a.getdata(100);

 b.getdata(200);

 item :: getcount(); // Access using Class Name

 a.getcount(); // Access using Objects

 b.getcount();

}

 Output:

 Count: 2

 Count: 2

 Count: 2

 www.sisoft.in

